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Abstract—T he adaptive finite-element method (FEM) is an it-
erative variant of the FEM where, in a first step, an initial mesh
with few and low-order elementsis generated, the corresponding
algebraic problem is solved and the error in the solution is esti-
mated in order to add degrees of freedom in those regions of the
domain with the biggest error estimation. Thisprocessisrepeated
until an ending condition is reached. The two basic stages in this
method are the error indication and the mesh enrichment. In this
paper, within the analysis of waveguiding structures, a new error
indicator based on the curl recovery is described. In addition, an
overview on refinement techniquesis presented, and the h-refine-
ment employed in thisstudy is briefly described. Results obtained
with the curl-recovery indicator are discussed and compared with
theclassical nonadaptive FEM and two previously developed error
indicators: theresidual and flux continuity indicators.

Index Terms—Error analysis, finite-element methods (FEMSs),
transmission lines, waveguides.

I. INTRODUCTION

N THE finite-element method (FEM), the stage of the ge-

ometry discretization has agreat importance because the ac-
curacy of the solution is directly related to the size, shape, and
order of the elements obtained in the meshing process. In some
problems, that solution is smooth enough and high accuracy can
be obtained by means of uniform discretizations of the domain.
This is the case, for instance, of the analysis of the different
modes in a rectangular and homogeneous waveguide. Never-
theless, there are many problems where both the characteris-
tics of the geometry and the properties of the materias lead to
very sharp solutions, with big variations throughout the domain
or even field singularities in some zones. In this case, a uni-
form mesh or the use of linear basis functions is highly ineffi-
cient since the mesh has unknowns in zones where they are not
needed, due to little variation of the solution, and lack of de-
grees of freedom where the variation is bigger. Increasing the
mesh density or the order of the basis functions in a homoge-
neous way leads to better accuracy, but thisis not a proper pro-
cedure since it considerably increases the computational cost of
the problem, mainly in solving the algebraic problem. That is,
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the mesh efficiency keeps constant if its density or the order of
basis functions is increased in a uniform way.

The generation of an efficient discretization is obtained by
fitting it to the distribution of the problem solution. It is pos-
sible, with the help of afriendly mesh generation tool, to create
amesh ad hoc manually or to use uniform meshes plus singular
dements[1], [2] inthe proximity of the singularities. Both pro-
ceduresrequire, however, previous experience of the user in that
kind of problem for finding out where a larger density of de-
grees of freedom or singular elements will be necessary. These
drawbacks can be avoided with adaptive procedures, which can
generate automatically efficient meshes that join a high accu-
racy and a reduced amount of degrees of freedom.

Roughly, an adaptive FEM is an iterative variant of the FEM
where, in afirst step, an initial mesh with few and low-order
elements is generated, the corresponding algebraic problem is
solved, and the error in the solution is estimated in order to
add degrees of freedom in those regions of the domain with
the biggest error estimation. This process is repeated until an
ending condition isreached. This condition can be, for instance,
a predetermined accuracy or a maximum number of degrees of
freedom. Two main stages of the adaptive method can beclearly
distinguished: the error indication at each element, and the se-
lection of the regions or elements that must be refined, plusthe
increasing of the degrees of freedom in the selected elements,
by means of an &-, p- or Ap-refinement. The so-named r-refine-
ment is not included here because it consists of a repositioning
of the unknowns of the problem and, although it can improve
the accuracy, it is not actually an enrichment procedure.

In this paper, a new error indicator based on the recovery of
the curl of the FEM solution in the modal analysis of waveg-
uiding structures is presented and the results are discussed and
compared with two previously developed error indicators. The
analysis of waveguiding structuresisarealistic problem that can
be solved in two dimensions due to the axial symmetry of trans-
mission lines. This kind of problem has been chosen for this
study because of the following main reasons.

* It isaclosed problem where the FEM can be used alone
without any error component due to the truncation of the
boundary.

« It leads to the solving of a generalized eigensystem
and, therefore, an optimal distribution of unknowns is a
key feature for reducing the computational cost of the
problem.

e The visualization of the meshes generated and their main
characteristics (size, shape, and order of elements) is
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easier than in a three-dimensional (3-D) problem, where
the volumetric mesh make it impossible to see inner
regions.

Il. CURL-RECOVERY ERROR INDICATOR

The error in the FEM solution of a generic vector problem is
defined by

e=1i— 1, D

where i is the exact solution and i}, is that obtained by means
of the FEM.
For each element in the mesh, (1) becomes

g =a - . #)

The norm of this vector is ameasure of the error committed
at the element

el = lla* =3l ©)

The total error in the problem is the sum of the elemental
contributions

-2 = —e (|2
I1211° =" llee|l”. ©
e=1

Obvioudly, the exact solution is unknown and, therefore, it is
impossible to know the exact error or the exact accuracy. How-
ever, it is possible to obtain an estimation.

Error indicators provide a reliable way to select those ele-
ments that need to be refined. They can be classified in a priori
and a posteriori error indicators. Due to the lack of datarelated
to the nature and behavior of the problem and its solution, it
is very difficult to perform an a priori estimation, i.e., before
the FEM solution is obtained. Therefore, most of the error indi-
cators employed are a posteriori estimators, i.e., they calculate
the error after the solution has been obtained. A reliable error
estimator must assure the correct adaptation of the mesh, inde-
pendently of the nature of the problem and the type of materials
it presents. A great variety of error estimators can be found in
thereferences. In[3]-6], cursory reviews of the most-used esti-
mators can be found. The most complete classificationisin [7].

In the Zienkiewicz—Zhu or recovery error indicators, very
common in civil-engineering problems, the exact solution of the
problem in (1) is substituted by a recovered or smoothed solu-
tion obtained from the FEM solution, and it is assumed that this
new solution ismore accurate than theinitial one. There are sev-
eral waysfor obtaining the recovered solution. Here, anew error
indicator based on the patch recovery technique is presented.
This technique can be applied on the same solution or on some
variable related with it. In this study, the chosen variable is the
vector field

=V Xi=0,T+4 0,0+ 0:%. 5)
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Taking into account that linear vector curl-conforming/scalar
Lagrange basis functions in triangular elements are used, the
components of the FEM solution are

l;
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where ¢; are the simplex coordinates, «{ and u; are the nodal
and edge values of the solution, I; isthe longitude of the edge 4,

and a;, b;, and A, are given by the transformation from the real
element to the canonical one, i.e.,

a; =Yiy — Yie 9)

bi =Ti— — Li4 (10)
1 z1 wn

A< =11 T2 Y2 (11)
1 23 ys

and subscripts + and — indicate the next or previousindex, re-
spectively, inthecyclel — 2 — 3 — 1.
Therefore, the components of the curl will be
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where ~ is the propagation constant.
Let
ct =357, (15)

be a measure of the elemental error, where ¢'¢ is the recovered
curl, obtained by means of alinear interpolation from the values
of & at the barycenters of the elements that share the central
node of the patch, as shown in Fig. 1. Intuitively, it can be as-
sumed that the recovered curl ¢ is more accurate than that ob-
tained directly from the FEM solution because the interpolation
performed on the recovered valuesis linear at each element and
continuous throughout the domain of the problem.

Let < be a node of the problem discretization and I; be the
associated patch with n; elements. In Fig. 1, it can be observed
that anode can have so many values at each component of 75, as
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Fig. 1. Recovering procedure. (a) o7y .
common node. (C) o¢ at each element.

(b) Recovered value of o,; at the

elements that share it. This implies a discontinuity throughout
thedomain. Thevalueof &;, must be calculated in apoint with a
superconvergence property, where superconvergence means the
quality of decrease in the norm of the error (for the linear ele-
ment) as O(N ~(/2)(1+4)) [8], where N is the number of de-
grees of freedom in the problem and § > 0; i.e., a convergence
at least as that obtained with uniform meshes in problems with
smooth solutions. In the case of the linear triangle, the super-
convergence point is its barycenter.

From the n; values of &'}, the recovered value in the patch
can be obtained for each component

op=d+dz+dy=P. a7 (16)

with
ﬁT:(l z ) a7)
o =(d & &) (18)

The vector ¢? is obtained by means of least mean square fit-
ting to the plane o, on the values at the sample points (barycen-
ters) for each component of the curl, i.e., the function

2
(O'hi (3717 yz) — Opi (371‘7 yz))

(o (o, ) = Pl wye@®)” (19)
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Fig. 2. Treatment of nodes belonging to less than three elements. (a) One
element. (b) Two elements.

must be minimum. Therefore, deriving F? in regard to P and
equaling to zero

nj

=2 F

=1

n;
§ P xza yz xza yz cr xm yz Thi xzv yz)

(20)
The solution of this system is
ar =A% (21)
where
A= ﬁ(xiv Yi) pT (i, yi) (22)
=1
l_;: 13(377, y7) Ohs (3771, y7) . (23)

i=1

For solving (20), it is required that the patch has, at least,
three elements, since three points (values of ¢3,) are needed for
defining the plane ¢7. However, in the mesh, concretely at its
boundary, there can be nodes that belong only to one or two
elements, as shown in Fig. 2 (the existence of, at least, three
elementsin the patches of inner nodesis guaranteed by the con-
nectivity of themesh). Inthose cases, the value assigned to those
nodes (black pointsin Fig. 2) is extrapolated from the function
o, of the patch of a neighboring node (white point). In atrian-
gular mesh, it is guaranteed that a node belonging to one or two
elements will have always a neighboring node that belongs to
three or more elements, excepting, of course, the trivial case of
amesh with only two elements.

Oncetheexpression of o, isknown, it is possibleto obtain the
value at the central node. When repeating thisoperationinall the
nodes in the mesh, the smoothed value of the curl is obtained.
This recovered value o, which is used as the more accurate
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solution, has been obtained here by means of a nodal Lagrange
interpolation from de values of ), a each node of the triangle
[see Fig. 1(c)].

Once &'¢ has been obtained, the error indicator is calculated
as the norm L, of ¢ asfollows:

et = [[ & aan
— [[ tor —oiultag
Qe
+f Yaar [[ Jor. - oiuf a0
Qe Qe

(24)
and the use of linear basis functions allows an analytical inte-
gration.

It is important to remark that, if the dual field has been ob-
tained in the problem, the curl (5) at each element is already
known, and the computational cost of thiserror indicator ismin-
imum. However, the residual error indicator requires the calcu-
lation of V x 1,1V x @¢, where v, ! is the magnetic perme-
ability or electric permittivity (depending on the formulation of
the problem) for obtaining the inner residual. For linear basis
functions, the computational cost of thisoperation is negligible,
but it increases with the order of the polynomial functions.

The generalization of the curl-recovery error indicator to
higher order basis functions is straightforward: for p-order
basis functions, the fitting of the curl should be done to a
p-order surface.

e e
U,,,y - ahy

IIl. MESH REFINEMENT

In an adaptive procedure, the stage of mesh refinement con-
sistsof theaddition of degrees of freedom inthoseregionswhere
the problem has a poor discretization, i.e., where the error is
bigger. The goal of this refinement is obtaining, in the last step
of refinement, a nearly homogeneous distribution of the error
in the mesh. For performing the refinement, a criterion for the
selection of the elements and away for adding new degrees of
freedom must be defined.

A. Selection of Refinement Regions

In most of the error indicators, the error is element associated.
Thus, the obvious criterion is choosing those el ements that have
an error larger that a given vaue. This vaue can be the root
mean square estimated error per element

lellz

Thus, the elements with ||e.|| > ||¢||,, are refined and the
error in the mesh becomes more uniform. Another possibility
is comparing the error at each element with a fraction of the
maximum error in the mesh. In this case, the chosen elements
are those with

(25)

llell,,, =

lleell > #lell (26)

max

where x (0 < k < 1) isaparameter that controls the amount of
refined elements and, therefore, the amount of new degrees of
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freedom generated at each step of the adaptive process. For large
#, only those elements with an error close to the maximum are
refined, and this leads to many steps in the adaptation process
for obtaining a good accuracy. On the other hand, values close
to zero generate an excessive amount of new unknowns that do
not improve the accuracy, but increase the computational cost.
A widely used value for this parameter is 0.5. Other criteriacan
beadded to this, for instance, amaximum and minimum number
of refined elements at each step [9].

B. Refinement Techniques

Once the elements to be refined are known, different strate-
giescan be defined for adding the new unknowns. The most used
strategy is the simple refinement, where all the chosen elements
for refinement are refined in the same way. Other strategies are
the multiple refinement, where severa levels of refinement are
defined [10]-{12] and the so-called forward-backward refine-
ment [13], [14], where the initial mesh has a medium density
and, at each step of adaptation, new unknowns can be added in
the regions with large error and some unknowns can be elimi-
nated where the error is small.

A mesh canincreaseitsdegrees of freedomintwo ways: split-
ting some elementsin smaller ones or increasing the order of the
basi sfunctionsin some elements. Thefirst oneisknown ash-re-
finement and the second one as p-refinement [15], [16]. A third
alternative is a combination of both techniques, the so-named
hp-refinement. Some examples of this strategy can be found in
[17]19].

The main difficulty of an h-type refinement isthe generation
of transition elementsthat assure the conformity of the mesh. In
this study, in afirst step, the chosen elements for refinement are
split in four elements following aregular refinement 1: 4. This
refinement guarantees the same aspect ratio in the new elements
or, if an edge exchange criterion is performed, even better aspect
ratios in some new elements[20]. In a second step, the noncon-
formity situations are solved by means of generation of transi-
tion elements [6]. It is important to remark that, following this
strategy, the aspect ratio of the el ementsthroughout the adaptive
process is bounded. Concretely, the smallest angle is, at least,
one-half of the smallest anglein theinitial mesh. After the split-
ting, aheredity mechanism is necessary because the new nodes,
edges, and elements must have the same properties (boundary
conditions or material properties) as their parents.

In a p-refinement, the size and number of elements do not
vary during the adaptation process. The way of increasing the
number of unknowns is increasing the order of the polynomial
basisfunctions. Since polynomialsof different order can be used
in the same mesh, it is possible that some pairs of elements that
share an edge have different basis functions and there be a dis-
continuity of the tangential component on the common edge. It
is very difficult to eliminate this discontinuity if interpolatory
basis functions [21] are employed. However, the use of hierar-
chical basisfunctions[22] providesan easy way for maintaining
the tangentia continuity. Since they form a hierarchical basis,
functions of order p are asubset of the functions of order p + 1.
Thus, the continuity isguaranteed by eliminating in the matrices
of the algebraic system the row and column corresponding to the
unknowns of order p + 1 on the shared edge.



DIAZ-MORCILLO et al.: RECOVERY ERROR INDICATOR FOR ADAPTIVE FINITE-ELEMENT ANALY SIS ON WAVEGUIDING STRUCTURES

‘ &=p=1

2a
@

(b)
Fig. 3. L-shaped waveguide. (a) Structure. (b) Initial mesh.

IV. RESULTS AND DiscussiON

In this study, the first mode in different waveguiding struc-
tures (an L-shaped homogeneous waveguide, a shielded unilat-
eral finline, and a shielded coplanar line with anisotropic and
lossy substrate) has been analyzed. All these structures present
singularities in the solution. In those cases, an adaptive FEM
procedure significantly decreases the computational cost of the
problem. In all cases, an electric-field formulation and a 1:4
h-refinement with x = 0.5 have been used. For analyzing the
performance of the adaptive process, the sequence of adapted
meshesis displayed and the convergence curves for the curl-re-
covery error indicator are compared with those obtained with a
complete residual error indicator [7], aflux continuity error in-
dicator [20], and a classical FEM, i.e., that obtained when the
density of the mesh isincreased uniformly. The computation of
the relative error in the propagation constant and the character-
istic impedance requires an exact or reference value. The value
obtained in an eight-step adaptive process has been employed
for this purpose.

A. L-Shaped Homogeneous Waveguide

Thiswaveguide presentsafield singularity at itsinner corner.
Fig. 3 shows its structure and the initial mesh in the adaptation
process. The results were obtained for kg = 7.87a. The ref-
erence valug, i.e, that obtained in the eighth step of the adap-
tive FEM, was 3/ko = 0.9242. The phase constant obtained by
means of the commercial tool MAFIA (finite-integration tech-
nique [23], 100000 nodes) was /3/ko = 0.9246. The sequence
of adapted meshesthroughout the process (Fig. 4) showsthat the
error indicator detects properly the singularity. An excessive re-
finement can be observed in zones where alarge error is not ex-
pected. Thisis due to a smaller accuracy of the error indication
because, in those zones, there are nodes that belong to less than
three elements and, therefore, the recovered value is obtained
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Fig. 4. Adapted meshes (first, fourth, and sixth) for the curl-recovery error
indicator.
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Fig. 5. Convergence for different error indicatorsin an L-shaped waveguide.
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Fig. 6. Shielded unilateral finline. (a) Structure. (b) Initial mesh (one-half).
(c) Transversal electric field (first mode). (d) Zoom of the singularity zone.

from an extrapolation of the valuein aneighboring node. Never-
theless, that refinement is not intense and does not significantly
influence the convergence of the process. As Fig. 5 shows, this
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Fig. 7. Adapted meshes (first, third, fourth, and fifth) for the curl-recovery
error indicator.

convergence is similar to those of the residual and flux conti-
nuity error indicators. For the wave impedance, the convergence
obtained with the adaptive procedureisthat of Fig. 5since, ina

TE mode, this parameter only depends on the propagation con-
Stant

 k
Zrw = jn—=.
~

27)
The computational cost of the adaptation stage (error indica
tion plus mesh refinement) for this and the other two examples

was negligible (Iess than 0.01%) in regard to the computational
cost of the FEM solving stage.

B. Shielded Unilateral Finline

Fig. 6 shows the structure of acylindrical shielded unilateral
finline, the initial mesh, and the transversal electric field for the
first mode. Due to the symmetry of the structure, the adaptation
process has been performed on one-half of theline, imposing an
electric wall condition on the symmetry axis. The main charac-
teristic of thislinein regard to the adaptive processisthe curved
boundary. Inthis case, the splitting of the boundary edges, when

TABLE |
NORMALIZED PHASE CONSTANT AT 20 GHz FOR THE FIRST MODE IN THE
SHIELDED UNILATERAL FINLINE

Reference value (8" step) | MAFIA, 50.000 nodes | Wu and Vahldieck [24]
0.9191 0.9329 0.9638
10"

£ 10*

ot
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Fig. 8. Convergence of /3 for different error indicators in aunilateral finline.
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Fig. 9. Convergenceof Z, for different error indicatorsin a unilateral finline.

arefinement is necessary, must take into account the curvature
of the parent edge and transfer it to the children edges. Thissplit-
ting modifies the boundary of the problem throughout the adap-
tive process. As Fig. 7 shows, the adaptation process increased
the degrees of freedom around the edge of the inner zero-thick-
ness conductor, i.e., the singularity zone. Table | compares the
reference value for the phase constant at 20 GHz, obtained in
an eight-step adaptive FEM, values obtained with MAFIA, and
found in the literature.

For the computation of the characteristic impedance of the
dominant mode in the finline, (28) was used as follows:

V2

Zo = —
°T 9p

(29)
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Fig. 10. Shielded coplanar line. (a) Structure. (b) Initial mesh (one-half).

where
w/2
V = E’I‘ (-/E’ Yy = ystrip) dz (29)
—w/2
1 TN
P_§%{[L(EXH)z@}. (30)

The convergence curves (Figs. 8 and 9) of the phase constant
and characteristic impedance verify the improvement in regard
to convergence of the FEM with uniform or, in this case, graded
meshes. The curl-recovery error indicator again has a similar
convergence as the residual indicator, except at the last stage,
when the curl recovery obtains a very accurate resullt.

C. Shielded Coplanar Line

Finally, the results obtained in the analysis of a shielded
coplanar rectangular line are presented. This structure contains
three zero-thickness metallic strips that produce singularity
zones at their edges. For the sake of generality, a nonphysical
lossy and anisotropic dielectric material with

8—3j0.2 4—;0.1 3—j0.1
4—3401 6—30.1 4-—;0.2
3-3j01 4-—3502 7-—30.3

(31)

Er2 =

was used as a substrate.

The structure and initial mesh are shown in Fig. 10. Once
again, the first mode in this line has been obtained in one-half
of the structureimposing, inthiscase, amagnetic wall condition
at the symmetry axis. The firgt, third, and fourth meshes of the
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Fig. 11. Adapted meshes (first, third, and fourth) for the curl-recovery error
indicator.
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Fig. 12. Phase constant for different error indicators in a shielded coplanar
line.
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Fig. 13. Attenuation constant for different error indicators in a shielded
coplanar line.

adaptive process (Fig. 11) show a correct detection of both sin-
gularities. For thisexample, adirect representation of the values
of the propagation constant obtained at each step is printed in
Figs. 12 and 13. This representation shows how these values
reach the reference value obtained after eight adaptive steps.
An asymptotic nonmonotonic behavior is obtained for both the
phase and attenuation constants. This behavior issimilar for the
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TABLE I
COMPARISON OF THE ERROR INDICATORS

Residual Flux inuity Curl recovery
Type Complete residual | Incomplete residual | Heuristic, patch recovery
Computational cost Negligible Negligible Negligible
Implementation Difficult Easy Easy
Treatment of singularities Detection Overestimation Detection

residua error indicator, but theflux continuity indicator presents
aslower convergenceto the exact value or even divergesin some
step. Thisresult can be explained by an ill-conditioning matrix
in the generalized eigensystem that must be solved since, as a
general rule, the flux continuity indicator overestimatesthe sin-
gularity and generates an excessiverefinement, obtaining neigh-
boring elements very different in size. This behavior is due to
itsincompleteresidual nature, i.e., while theresidual error indi-
cator takesinto account the fulfillment of the vector wave equa-
tion in the element and the boundary conditions on its edges, the
flux continuity indicator only measures the boundary condition
fulfillment. Table II compares the main characteristics of these
three error indicators.

V. CONCLUSIONS

A new recovery error indicator has been developed and ap-
plied in an adaptive FEM procedure for the analysis of waveg-
uiding structures. This error indicator, complemented with an
h-refinement technique that maintainsthetriangle’ s aspect ratio
bounded throughout the adaptive process, has obtained conver-
gence rates much better that the classical FEM with uniform
or graded meshes, and presents a better performance than the
flux continuity indicator and similar or, in some cases, better
than the complete residua indicator. In regard to the computa-
tional cost, thethreeindicators showed anegligible CPU timein
front of the time for obtaining the matrices of the eigensystem
and solving it. Nevertheless, if higher order basis functions are
used, the curl-recovery indicator appearsto be agood candidate
for estimating the error dueto its simpler formulation and easier
implementation.
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